给你一个整数数组 cost ,其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。一旦你支付此费用,即可选择向上爬一个或者两个台阶。
你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。
请你计算并返回达到楼梯顶部的最低花费。
示例 1:
输入:cost = [10,15,20]
输出:15
解释:你将从下标为 1 的台阶开始。
- 支付 15 ,向上爬两个台阶,到达楼梯顶部。
总花费为 15 。
示例 2:
输入:cost = [1,100,1,1,1,100,1,1,100,1]
输出:6
解释:你将从下标为 0 的台阶开始。
- 支付 1 ,向上爬两个台阶,到达下标为 2 的台阶。
- 支付 1 ,向上爬两个台阶,到达下标为 4 的台阶。
- 支付 1 ,向上爬两个台阶,到达下标为 6 的台阶。
- 支付 1 ,向上爬一个台阶,到达下标为 7 的台阶。
- 支付 1 ,向上爬两个台阶,到达下标为 9 的台阶。
- 支付 1 ,向上爬一个台阶,到达楼梯顶部。
总花费为 6 。
提示:
2 <= cost.length <= 1000
0 <= cost[i] <= 999
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
| /** * 746. 使用最小花费爬楼梯 */ public class LeetCode746 {
/** * 同样是动态规划,以及贪心 * 每次赋值都是对比上一个值加上花费,以及上上值加上花费,那个小取那个 * 需要注意好区间边界的问题 * dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]) */ public int minCostClimbingStairs(int[] cost) { if (cost == null || cost.length == 0) { return 0; } int[] dp = new int[cost.length]; dp[0] = cost[0]; dp[1] = cost[1]; for (int i = 2; i < cost.length; i++) { dp[i] = Math.min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]); } return dp[cost.length - 1]; } }
|