随意随想

知其然,知其所以然

0%

回溯算法的时间复杂度

回溯算法一般能用来解决暴力算法所不能解决的问题,这类问题包括组合、排序、子集等等,那么时间、空间复杂度究竟是多少呢?

子集问题分析:

  • 时间复杂度:$O(n × 2^n)$,因为每一个元素的状态无外乎取与不取,所以时间复杂度为$O(2^n)$,构造每一组子集都需要填进数组,又有需要$O(n)$,最终时间复杂度:$O(n × 2^n)$。
  • 空间复杂度:$O(n)$,递归深度为n,所以系统栈所用空间为$O(n)$,每一层递归所用的空间都是常数级别,注意代码里的result和path都是全局变量,就算是放在参数里,传的也是引用,并不会新申请内存空间,最终空间复杂度为$O(n)$。

排列问题分析:

  • 时间复杂度:$O(n!)$,这个可以从排列的树形图中很明显发现,每一层节点为n,第二层每一个分支都延伸了n-1个分支,再往下又是n-2个分支,所以一直到叶子节点一共就是 n * n-1 * n-2 * ….. 1 = n!。每个叶子节点都会有一个构造全排列填进数组的操作(对应的代码:result.push_back(path)),该操作的复杂度为$O(n)$。所以,最终时间复杂度为:n * n!,简化为$O(n!)$。
  • 空间复杂度:$O(n)$,和子集问题同理。

组合问题分析:

  • 时间复杂度:$O(n × 2^n)$,组合问题其实就是一种子集的问题,所以组合问题最坏的情况,也不会超过子集问题的时间复杂度。
  • 空间复杂度:$O(n)$,和子集问题同理。

一般说道回溯算法的复杂度,都说是指数级别的时间复杂度,这也算是一个概括吧!