随意随想

知其然,知其所以然

0%

LeetCode 150. 逆波兰表达式求值

根据 逆波兰表示法,求表达式的值。
有效的算符包括 +、-、*、/ 。每个运算对象可以是整数,也可以是另一个逆波兰表达式。

注意 两个整数之间的除法只保留整数部分。

可以保证给定的逆波兰表达式总是有效的。换句话说,表达式总会得出有效数值且不存在除数为 0 的情况。

示例1:
输入:tokens = [“2”,”1”,”+”,”3”,”*”]
输出:9
解释:该算式转化为常见的中缀算术表达式为:((2 + 1) * 3) = 9

示例2:
输入:tokens = [“4”,”13”,”5”,”/“,”+”]
输出:6
解释:该算式转化为常见的中缀算术表达式为:(4 + (13 / 5)) = 6

示例3:
输入:tokens = [“10”,”6”,”9”,”3”,”+”,”-11”,”“,”/“,”“,”17”,”+”,”5”,”+”]
输出:22
解释:该算式转化为常见的中缀算术表达式为:

((10 * (6 / ((9 + 3) * -11))) + 17) + 5
= ((10 * (6 / (12 * -11))) + 17) + 5
= ((10 * (6 / -132)) + 17) + 5
= ((10 * 0) + 17) + 5
= (0 + 17) + 5
= 17 + 5
= 22

提示:

1 <= tokens.length <= 104
tokens[i]是一个算符(”+”、”-“、”*” 或 “/“),或是在范围 [-200, 200] 内的一个整数

逆波兰表达式:

  • 逆波兰表达式是一种后缀表达式,所谓后缀就是指算符写在后面。
  • 平常使用的算式则是一种中缀表达式,如 ( 1 + 2 ) * ( 3 + 4 ) 。
  • 该算式的逆波兰表达式写法为 ( ( 1 2 + ) ( 3 4 + ) * ) 。
  • 逆波兰表达式主要有以下两个优点:

去掉括号后表达式无歧义,上式即便写成 1 2 + 3 4 + * 也可以依据次序计算出正确结果。
适合用栈操作运算:遇到数字则入栈;遇到算符则取出栈顶两个数字进行计算,并将结果压入栈中

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
/**
* 逆波兰表达式就是后缀表达式,对人类来说,一般都是中序表达式,但是计算机使用的是栈的数据结构,所以对弈计算机来说后后续表达式相对简单
*/
public int evalRPN(String[] tokens) {
Stack<Integer> stack = new Stack<>();
for (String s : tokens) {
if (s.equals("+")) {
stack.push(stack.pop() + stack.pop());
} else if (s.equals("-")) {
Integer a = stack.pop();
Integer b = stack.pop();
stack.push(b - a);
} else if (s.equals("*")) {
stack.push(stack.pop() * stack.pop());
} else if (s.equals("/")) {
Integer a = stack.pop();
Integer b = stack.pop();
stack.push(b / a);
} else
//如果不是符号,直接入栈
stack.push(Integer.valueOf(s));
}
return stack.pop();
}